
Python for Physicists

Chapter 4. Python Lists

Python Lists

• A Python list is a container that can hold a collection of items, like numbers, words, or even
other lists, all in a specific order.

• You can think of a list like a row of boxes, each with a number (the index) so you can look inside,
replace what’s there, or add new boxes at the end.

• Use square brackets to create a list:

my_list = [10, 13, 0, “dog”, “cat”]

10 13 “cat”“dog”0my_list =

List indexing
• The boxes (or elements) in a list are numbered, starting from 0.

• The box number is called the index. You can think of the index as the item’s address.

• You can Fetch an item by placing the index in square brackets:

first_item = my_list[0]

10 13 “cat”“dog”0my_list =

0 1 2 3 4list index:

second_item = my_list[1]

last_item = my_list[-1]

next_to_last_item = my_list[-2]

→ 10
→ 13
→ “cat”
→ “dog”

Modifying List elements

• You can replace the contents of a “box” by assigning it a new value:

my_list[2] = 7.5

10 13 “dog”0my_list = “cat”

10 13 “dog”7.5my_list = “cat”

0 1 2 3 4list index:

before

after

Slicing
• You can also fetch more than one box at a time using the colon notation:

• The elements are fetched from the starting index up to, but not including the ending index

my_list[0:3]

starting index ending index (not included)

10 13 “dog”7.5my_list = “cat”

0 1 2 3 4list index:

my_list[0:3] → [10, 13, 7.5]

• If you leave the starting or ending index off, Python defaults to the beginning or end of the list:

my_list[:3] → [10, 13, 7.5] my_list[3:] → [“dog”, “cat”]

Modifying multiple elements with slicing
• You can also assign more than one box at a time using slicing:

my_list[2:] = [16, 19, 22]

10 13 “dog”7.5my_list = “cat”

10 13 1916my_list = 22

0 1 2 3 4list index:

before

after

Copying Lists
• If you need to copy a list, you’ll want to use the .copy() method.

my_copy = my_list.copy()

my_list =

my_copy = 10 13 1916 22

10 13 1916 22

• If you make a change to one, the other won’t be affected

Creating an Alias
• If you simply assign your list to another variable, such as A, Python does not make a copy

A = my_list

my_list = 10 13 1916 22

• The variable A will be an alias that points to the same “boxes” (i.e. memory locations) as my_list.

• Thus changing my_list will also change the contents of A

A =

Common list methods:
A.copy(x) # creates a copy of A
A.append(x) # appends value x to end of A
A.extend(B) # appends list B to end of A
A.remove(30) # deletes first element in A whose value = 30
A.insert(n,x) # insert value x at index n in list A
A.count(x) # number of occurrences of x in A
A.sort() # sorts items in list A
A.reverse(x) # reverse order of items in A

Common functions that act on lists:
len(A) # number of items in list A
sum(A) # sum of items in list A
min(A) # minimum value of items in A
max(A) # maximum value of items in A

A[0],A[1] = A[1],A[0] # swap items 0 and 1

A = [] # sets A to the empty list
del A[3] # deletes index=3 item from list

Creating an Alias
• If you simply assign your list to another variable, such as A, Python does not make a copy

A = my_list

t = 2 4 8 6 10

• The variable A will be an alias that points to the same “boxes” (i.e. memory locations) as my_list.

• Thus changing my_list will also change the contents of A

0 1 2 3 4list index:

